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Supplementary Methods 

Subjects 

Healthy male and females without known cardiovascular disease, were recruited from a previously
characterized cohort of subjects investigated within the SingHEART study, which in turn was a
substudy  of  the  so-called  SingHealth  Biobank  program.1 Original  method  for  recruitment  was
predominantly advertisement including posters and local newspapers. 

The  SingHEART program characterized  all  subjects  using  (i)  written  questionnaire,  (ii)  fasting
blood tests, (iii) electrocardiogram (ECG), (iv) ambulatory blood pressure monitoring (ABPM), (v)
continuous  ECG  monitoring,  (vi)  activity  and  sleep  tracker,  (vii)  CT  calcium  score,  (viii)
cardiovascular magnetic resonance (CMR), (ix) lipidomics, and (x) genomics analyses. 

Exclusion criteria were as follows: (i) any cardiovascular risk factors including hypertension (either
based on clinical history, or abnormal ABPM defined as mean 24-hour blood pressure ≥ 130 / 80
mmHg or daytime blood pressure ≥ 135 /  85 mmHg or night  time blood pressure ≥ 120 /  70
mmHg), impaired fasting plasma glucose (≥ 6.1 mM; ≥ 110 mg/dL) or diabetes mellitus (fasting
plasma glucose ≥ 7.0 mM; ≥ 126 mg/dL), hypercholesterolemia (LDL-C > 4.9 mM; ≥ 190 mg/dL), or
coronary  calcification  (Agatston  score  ≥  100  units);  (ii)  significant  arrhythmia  including  atrial
fibrillation and bradycardia; (iii) any respiratory disease including COPD; (iv) any renal disorder
including chronic kidney failure; (v) any hepatic disease including known or suspected fatty liver
disease and/or raised levels of hepatic transaminases; (vi) any autoimmune or connective tissue
disorder; (viii) history of cerebrovascular disease (based on clinical or radiological evidence), (ix)
present or historical cancer, or (x) any other acute or chronic medical condition deemed by the
investigators to potentially  affect  results of  echocardiograms e.g.  by altering the hemodynamic
state of the patient or producing adverse cardiac structural change. 

Echocardiography 

Equipment and Staff 

Acquisition  of  standard  two-dimensional  echocardiograms  used  in  the  present  report  was
performed by 2 sonographers using Philips Epiq 7 (Philips, Andover, MS, USA) and measurements
were performed at a dedicated workstation using commercially available software (GE EchoPAC,
GE Healthcare,  Horten Norway;  Agfa HealthCare IMPAX Cardiovascular  Suite,  Greenville,  SC,
USA). 

Variability Testing 
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Echocardiographic core laboratory data on inter-observer variability is obtained through an annual
validation exercise administered by core lab office. Measurements are made in a blinded fashion
by  core  lab  sonographers  and  are  calculated  as  the  deviation  from  mean  across  observers,
ranging from 3.6% to 9.8% (lowest for internal LV diameter, highest for posterior wall thickness). 

Statistical Analysis 

Overview of Bayesian modeling 

Parameters at different levels in a hierarchical Bayesian model are expressed as coexisting in a
joint parameter space. The presence of high-level parameters acts to pull low-level parameters
closer together than they would be if there were not a higher-level distribution: so-called shrinkage.
A prior distribution is supplied on the top-level parameters, and an entire posterior distribution is
inferred across the joint  parameter  space (Supplementary  Figure  1).  The posterior  distribution
demonstrates which parameter values are credible and their uncertainty, given the data. 

Sharing of information leads to pooling as the estimation of  parameters occurs simultaneously
across  the  levels  of  the  model:  means  and  their  variability  are  estimated  together  for  all
observations. 

Bayesian parameterization of multi-level models benefit in the same way as conventional mixed
models from estimates being informed by data from all observations. However, multiple interesting
differences between these 2 also exist: firstly, the entire parameter space of a Bayesian model is
estimated in the posterior draw with uncertainty about parameters expressed with a 95% credible
interval, in contrast to the random effect term of a mixed model which has no defined standard
error (and therefore no 95% confidence interval).2 Moreover, while shrinkage helps to achieve a
conservative estimate for both, the use of a meaningful prior in a Bayesian model reduces the risk
of overfitting (“Bayesian posteriors are calibrated by definition”).3 This is relevant in the present
study as meaningful priors could be created based on the 4 previously published reports which
provide guidance as to what values for a and b can be reasonably expected.4 

Parameterization of Bayesian models

We applied Bayesian statistics to analyse the role of gender in two different models both based on
earlier simulation work done by our group,4 evaluating existing literature in this area.5–8 Firstly, a
hierarchical model was created where “partial pooling” was allowed across gender for intercept a
and slope b. As shown in Supplementary Figure 1a, this model was parameterized based on the
allometric equation as relating log LVM (m) to log body height (h) in subjects i = 1, 2 ... 229 given
gender s ∈ {male, female} as mi|s ~ Normal (μ, σ), where μ =  as + bs · xi|s , and σ ~ Gamma (3.4,
0.2),  to  accommodate  residuals  with  an  expected  value  of  approximately  30  g.4 The  model
parameterized priors for intercept (a) and slope (b) as as ~ Normal (ω, λ), and bs ~ Normal (κ, δ),
where λ ~ Gamma (1.0, 0.2) and δ ~ Gamma (1.0, 0.2). Hyperpriors were parameterized based on
earlier  work in this area as  κ ~ Normal (3.8, 3.0),  and  ω ~ Normal (1.7, 3.0).  Concretely,  the
hyperprior for intercept a was designed to accommodate values of approximately 44 – 60 g, and
the hyperprior for b was given a mean of 1.7 as informed by available data.4,8
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Secondly, a “zero pooling” model was created where 2 separate regression lines were fitted to the
data. As shown in Supplementary Figure 1b, this model was parameterized as mi|s ~ Normal (as +
bs · xi|s , σ), where σ =  Gamma (3.4, 0.2), as ~ Normal (1.7, 3.0), and bs ~  Normal (3.4, 3.0). This
created separate priors for males and females in the case of both a and b, but no hyperpriors and
a single posterior draw for the output of the allometric equation and its error term. 

Bayes Factor Analysis

Bayesian models were compared by calculating the ratio of their relative credibility—the so-called
Bayes factor (BF). This approach can be viewed as an extension of Bayesian hierarchical models
where a top-level parameter is added, representing an index for the models. A comparison may be
performed of  probability  for  each model  conditional  on the data after  marginalising across the
parameters within models. In practical terms, the magnitude of the BF is typically converted to a
discrete decision about models at a threshold value of 3.0, above which “substantial evidence”
exists  in  favour  of  one  model  over  another.9 Model  comparison  based  on  BF  has  been
conceptualised by some as a Bayesian alternative to null  hypothesis significance testing—with
some similarities in application but also important differences. Of note, the BF is determined by
differences in how well the available data fit models including their priors. In contrast, while null
hypothesis significance testing in conventional statistics is also influenced by model fit,  it  relies
heavily on the size of the population under study. A type 2 error arises if power is insufficient which
leads researchers to reject a conventional model even if it fits the data better.

Simulation 

As explained under Results in the main manuscript, when the slope (b) was entered as a random
effect variable in a conventional mixed model, there was no significant improvement over a model
with a random effect only for the intercept and only a fixed effect of b. Nonetheless, the Bayesian
model comparison based on BF showed that a hierarchical model allowing partial mixing for  b
through a hyperprior (and zero mixing for a) gave a considerably better fit to data than a model with
zero mixing for both a and b. To reconcile this apparent contradiction, we performed a simulation to
examine the effect of population size on the p-value of the random effect term in the mixed model.
The covariance matrix for the study population was used and the proportion of males:females was
maintained, with randomly drawn study populations scaled up by multiples of the original study size
(numbers of males and females, respectively, in simulated runs was {96, 133}, {192, 266}, {288,
399} etc). 
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Supplementary Discussion 

Regularization and Overfitting

Diagrams in Supplementary  Figures 5a – 5b show the fits achieved with different models, both
frequentist and Bayesian. The better a model reduces dependence of LVM on body size, the closer
its regression line passes to the origin of the chart. Models with best fit were generally the “zero
pooling”  models  and  the  mixed  models,  as  compared  to  e.g.  Bayesian  models  with  “partial
pooling”. Two observations that may be pointed out are as follows. (i) Firstly, while the random
effect term of mixed models for slope (b) was statistically non-significant, the model nonetheless
achieved  a  very  close  fit  to  data  and  minimized  dependence  of  LVM  on  body  size.  (ii)
Parameterization with zero pooling appeared to provide a closer fit to data, despite the BF analysis
favoring the Bayesian model with “partial pooling” across gender. This begs the question of what
role overfitting plays for these results and what the impact is of regularization in Bayesian analysis. 

When a dataset is divided into 2 subsets and each given its own regression line, the ratio of free
parameters  available  to  the  amount  of  information  contained  in  the  data  can  be  reasonably
expected to  increase.  The zero  pooling  model  should  therefore  be able  to  better  capture the
structure of the dataset and give a closer fit. However, this does not consider the presence of a
prior. The fact that between-model comparison using BF favored the clustered model over the zero
pooling model illustrates a particular strength of Bayesian regression: as long as meaningful priors
are  provided,  Bayesian  models  are  less  prone  to  overfitting  than  frequentist  models.  Firstly,
Bayesian  models  may be  conceptualized  as  incorporating  training  and  testing  within  a  single
model: its priors can be reasonably viewed as the result of training on previous data, with the
“present  data”  (or  likelihood)  representing  a  new,  held-out  dataset  for  analysis.10 Secondly,
frequentist estimates represent a single, intrinsically optimal fit to the data at hand. E.g. maximum
likelihood  estimation  solves  for  the  unbiased  value  for  population  probability  that  makes  the
observed data the most likely to have occurred. Confidence limits are subsequently obtained by
combining population size with distributional assumptions on the maximum likelihood estimate. As
the point estimates obtained may have limited external validity when applied to out-of-sample data,
constraints are commonly placed on these to regularize them, in order to avoid optimism and
overfitting  (e.g.  ridge  regression  or—in  its  general  form—penalized  maximum  likelihood
estimation).11 While  regularization  is  thus  often  employed  in  frequentist  statistics  to  achieve
conservative estimates, it may be shown that imposing a Gaussian prior on a regression parameter
in  a  Bayesian  model  (as  done  in  the  present  study)  is  in  fact  mathematically  equivalent  to
performing ridge regression: the prior acts as a natural regularizer.12 We believe the conservative
estimates obtained in this study using Bayesian statistics are a strength in themselves, given the
range  of  possible  optimal  values  for  b published  in  earlier  papers  in  this  field.  As  such,  our
interpretation of Supplementary Figures 5a – 5b is as follows. (i) Firstly, while conventional mixed
models were underpowered to detect a statistically significant random effect of gender on the slope
b,  these models  nonetheless  achieved  a  very  close fit  to  the  available  data  which effectively
eliminated dependence on body size as regression lines passed through the origin of the chart.
Point  estimates  thus  closely  reflected  the  information  contained  in  the  dataset.  (ii)  Secondly,
regression lines of Bayesian models with “partial pooling” did not pass as close to the origin of the
chart owing to a design choice: shrinkage and avoidance of overfitting. We believe the adoption of
allometric indexing into clinical practice will be facilitated if publications reporting estimates for  b
seek to achieve external validity, and Bayesian analysis as used in the present project is attractive
in that respect. Future work seeking to reconcile earlier reports should consider using some form of
regularization to achieve estimates with out-of-sample applicability.4 
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Supplementary Figures 

Supplementary  Figure 1 Schematic representations of Bayesian models: “partially pooled”
(left panel; a) and “zero pooled” (right panel; b). 
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Supplementary  Figure  2 Residuals  in  males  (blue)  and
females (red)  showing clustering  on sex in  the regression
model, leading to violation of assumptions of independence
of observations. 
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Supplementary Figure 3 Posterior probability densities in the “partially
pooled” Bayesian model. 
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Supplementary  Figure  4 Trace  plot  showing  final  8  chains  from
Hamiltonian Monte Carlo Markov Chains including burn-in period (on
the left; shaded in grey). Top panels show the intercept (a) in males
(left) and females (right), bottom panels show slope (b) in males (left)
and females (right). 
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Supplementary  Figure 5 Validation  plots  for  male  (upper  panel;  6a)  and  female  (lower
panel;  6b)  subjects  showing  how  well  coefficients  from  models  were  able  to  minimize
dependence of LVM on body size, judged by how close the regression line passes to the
origin of the diagram (0, 0). Of note, while the random effect (RE) term for gender in the
conventional mixed model was statistically non-significant, the point estimate identified by the
restricted maximum likelihood method nonetheless achieved a close fit to the data very. See
Supplementary Discussion for details and interpretation. 
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Supplementary  Figure  6 Exploratory  simulation
to examine the role of sample size for the p-value
of  the  random  effect  term  for  gender  in  the
conventional  mixed  model.  A p-value  below  the
commonly  applied  threshold  value  of  0.05  was
reached at a population of approximately n = 600
subjects. 
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